

Extra exercises 2: Storage Hierarchy

Question 1: Sorted file organization only supports range searches.

- A) True
- B) False

Question 2: The indexing field in a clustered indexing is always a key.

- A) True
- B) False

Question 3: Hash-based indexes are not efficient for range searches.

- A) True
- B) False

Question 4: Assume that we have a Tree-based index that is clustered and sparse. The index key is also the primary key of the table. The data entries and the data files are stored in a Heap file. Which of the following is not true? (multiple choice)

- A) The index is efficient for range searches.
- B) The cost (number of needed I/Os) of retrieving records in the range searches is the number of matching index data entries.
- C) The cost (number of needed I/Os) of an insert is 2.
- D) The index is efficient for frequent insert/delete

FDB is a database that keeps information about the Films in the following table:

Film(filmId, directorName, year, title, length)

The size of each record of the table is **80B: filmId is 10B, directorName is 30B, year is 10B, title is 20B, and length is 10B**. All database page sizes are equal to **2048B**. Each

page can store a whole or an integer number of records (a record can not be split into two pages.), along with **24B** as a footer and **24B** as a header of metadata.

Assume that we have 100000 records available from 2014 until the end of 2023 and the number of films per year is uniformly distributed.

Question 5: How many records fit on each page?

Question 6: How many pages are needed for this database?

Question 7: If we use a heap file organization, what is the maximum I/O cost of the following query?

```
SELECT AVG(length)
  FROM Film
 WHERE year=2023
```

- A) The cost of finding the qualifying records.
- B) The total cost of the query.

Question 8: If we use a sorted file organization based on filmId, what is the maximum I/O cost of the following query?

```
DELETE
  FROM Film
 WHERE year=2023
```

- A) The cost of finding the qualifying records.
- B) The total cost of the query.

Question 9: Now assume that we want to transmit the database to another machine that uses the DSM page layout and each page size is **1024B**. The footer and the header size are both **12B**.

- A) How many pages are needed for the sub-table (filmId, directorName)?
- B) How many pages are needed for the sub-table (filmId, year)?
- C) How many pages are needed for the sub-table (filmId, title)?
- D) How many pages are needed for the sub-table (filmId, length)?
- E) How many pages are needed for moving all data into this device?

Data Structure: [No Index(default) | B-Tree | Hash]

Format: [No Index(default) | Clustered | Unclustered]

On what key: [No Index(default) | filmId | directorName | year | length]

Density: [No Index(default) | Sparse | Dense]

Question 10: Assume that we have 20M tuples with infrequent insert/updates and queries of format `SELECT * FROM Film WHERE year = 2019`. Construct the best available index.

Question 11: Assume that we have 20 tuples with frequent updates and queries of format `SELECT MAX(length) FROM Film WHERE year = 2019 AND length > 60`. Construct the best available index.

Question 12: Assume that we have 10000 tuples with frequent insert\delete and queries of format `SELECT * FROM Film WHERE year > 2010 AND length > 60`. Construct the best available index.

Extra exercises 2: Storage Hierarchy Solutions

Answer 1: B

Answer 2: B

Answer 3: A

Answer 4: B, D

Answer 5: $(2048-48)/80 = 25$

Answer 6: $100000/25 = 4000$

Answer 7:

A) 4000

B) 4000

Answer 8:

C) 4000

D) $4000 + 4000 / 10 = 4400$

Answer 9:

A) $(1024 - 24) / 40 = 25$ records per page => $100000 / 25 = 4000$

B) $(1024 - 24) / 20 = 50$ records per page => $100000 / 50 = 2000$

C) $(1024 - 24) / 30 = 33$ records per page => $100000 / 33 = 3031$

D) $(1024 - 24) / 20 = 50$ records per page => $100000 / 50 = 2000$

E) Total = 11031 pages

Answer 10: Hash | Clustered | year | Sparse

Answer 11: No index

Answer 12: B-Tree | UnClustered | year | Dense